Exercise 5

Use the modified decomposition method to solve the following Volterra integral equations:

$$
u(x)=2 x-\left(1-e^{-x^{2}}\right)+\int_{0}^{x} e^{-x^{2}+t^{2}} u(t) d t
$$

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{gathered}
\sum_{n=0}^{\infty} u_{n}(x)=2 x-\left(1-e^{-x^{2}}\right)+\int_{0}^{x} e^{-x^{2}+t^{2}} \sum_{n=0}^{\infty} u_{n}(t) d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=2 x+\left(-1+e^{-x^{2}}\right)+\int_{0}^{x} e^{-x^{2}+t^{2}}\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=\underbrace{2 x}_{u_{0}(x)}+\underbrace{\left(-1+e^{-x^{2}}\right)+\int_{0}^{x} e^{-x^{2}+t^{2}} u_{0}(t) d t}_{u_{1}(x)}+\underbrace{\int_{0}^{x} e^{-x^{2}+t^{2}} u_{1}(t) d t}_{u_{2}(x)}+\cdots
\end{gathered}
$$

Grouping the terms as we have makes it so that the series terminates early.

$$
\begin{aligned}
u_{0}(x) & =2 x \\
u_{1}(x) & =\left(-1+e^{-x^{2}}\right)+\int_{0}^{x} e^{-x^{2}+t^{2}} u_{0}(t) d t=\left(-1+e^{-x^{2}}\right)+\left(1-e^{-x^{2}}\right)=0 \\
u_{2}(x) & =\int_{0}^{x} e^{-x^{2}+t^{2}} u_{1}(t) d t=0 \\
& \vdots \\
u_{n}(x) & =\int_{0}^{x} e^{-x^{2}+t^{2}} u_{n-1}(t) d t=0, \quad n>2
\end{aligned}
$$

Therefore,

$$
u(x)=2 x .
$$

